erste Dateien in Graphen
This commit is contained in:
parent
6a8f65b63b
commit
3a2135741c
79
Graphen/shortest_path_visualisation.py
Normal file
79
Graphen/shortest_path_visualisation.py
Normal file
@ -0,0 +1,79 @@
|
||||
"""
|
||||
.. _tutorials-shortest-paths:
|
||||
|
||||
==============
|
||||
Shortest Paths
|
||||
==============
|
||||
|
||||
This example demonstrates how to find the shortest distance between two vertices
|
||||
of a weighted or an unweighted graph.
|
||||
"""
|
||||
import igraph as ig
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# %%
|
||||
# To find the shortest path or distance between two nodes, we can use :meth:`igraph.GraphBase.get_shortest_paths`. If we're only interested in counting the unweighted distance, then we can do the following:
|
||||
g = ig.Graph(
|
||||
6,
|
||||
[(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)]
|
||||
)
|
||||
results = g.get_shortest_paths(1, to=4, output="vpath")
|
||||
|
||||
# results = [[1, 0, 2, 4]]
|
||||
|
||||
# %%
|
||||
# We can print the result of the computation:
|
||||
if len(results[0]) > 0:
|
||||
# The distance is the number of vertices in the shortest path minus one.
|
||||
print("Shortest distance is: ", len(results[0])-1)
|
||||
else:
|
||||
print("End node could not be reached!")
|
||||
|
||||
# %%
|
||||
# If the edges have weights, things are a little different. First, let's add
|
||||
# weights to our graph edges:
|
||||
g.es["weight"] = [2, 1, 5, 4, 7, 3, 2]
|
||||
|
||||
# %%
|
||||
# To get the shortest paths on a weighted graph, we pass the weights as an
|
||||
# argument. For a change, we choose the output format as ``"epath"`` to
|
||||
# receive the path as an edge list, which can be used to calculate the length
|
||||
# of the path.
|
||||
results = g.get_shortest_paths(0, to=5, weights=g.es["weight"], output="epath")
|
||||
|
||||
# results = [[1, 3, 5]]
|
||||
|
||||
if len(results[0]) > 0:
|
||||
# Add up the weights across all edges on the shortest path
|
||||
distance = 0
|
||||
for e in results[0]:
|
||||
distance += g.es[e]["weight"]
|
||||
print("Shortest weighted distance is: ", distance)
|
||||
else:
|
||||
print("End node could not be reached!")
|
||||
|
||||
# %%
|
||||
# .. note::
|
||||
#
|
||||
# - :meth:`igraph.GraphBase.get_shortest_paths` returns a list of lists becuase the `to` argument can also accept a list of vertex IDs. In that case, the shortest path to all each vertex is found and stored in the results array.
|
||||
# - If you're interested in finding *all* shortest paths, take a look at :meth:`igraph.GraphBase.get_all_shortest_paths`.
|
||||
|
||||
# %%
|
||||
# In case you are wondering how the visualization figure was done, here's the code:
|
||||
g.es['width'] = 0.5
|
||||
g.es[results[0]]['width'] = 2.5
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ig.plot(
|
||||
g,
|
||||
target=ax,
|
||||
layout='circle',
|
||||
vertex_color='steelblue',
|
||||
vertex_label=range(g.vcount()),
|
||||
edge_width=g.es['width'],
|
||||
edge_label=g.es["weight"],
|
||||
edge_color='#666',
|
||||
edge_align_label=True,
|
||||
edge_background='white'
|
||||
)
|
||||
plt.show()
|
47
Graphen/simplegraph.py
Normal file
47
Graphen/simplegraph.py
Normal file
@ -0,0 +1,47 @@
|
||||
list_of_nodes = list()
|
||||
list_of_edges = list()
|
||||
|
||||
class node:
|
||||
def __init__(self, name=""):
|
||||
self.name = name
|
||||
|
||||
def get_name(self):
|
||||
return self.name
|
||||
|
||||
def set_name(self, new_name=""):
|
||||
if new_name != self.name:
|
||||
old_name = self.name
|
||||
self.name = new_name
|
||||
print("name of node {} changed to {}".format(old_name, new_name))
|
||||
else:
|
||||
pass
|
||||
|
||||
n1 = node("A")
|
||||
n2 = node("B")
|
||||
n3 = node("C")
|
||||
|
||||
for n in [n1,n2,n3]:
|
||||
list_of_nodes.append(n)
|
||||
|
||||
print(list_of_nodes)
|
||||
|
||||
for n in list_of_nodes:
|
||||
print(n.get_name())
|
||||
|
||||
list_of_node_names = [x.get_name() for x in list_of_nodes]
|
||||
|
||||
print(list_of_node_names)
|
||||
|
||||
|
||||
class edge:
|
||||
def __init__(self, nstart, nend):
|
||||
self.nstart = nstart
|
||||
self.nend = nend
|
||||
|
||||
def __str__(self):
|
||||
s = self.nstart.get_name()
|
||||
e = self.nend.get_name()
|
||||
return "{} -> {}".format(s,e)
|
||||
|
||||
e1 = edge(n1, n2)
|
||||
print(e1)
|
Loading…
Reference in New Issue
Block a user